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Workloads, Observables,
Benchmarks and Instrumentation

G.E. Lyon
R.D. Snelick

Main emphasis is upon a compact user-level summary that captures the

performance variabilities of a system. A dependency tree provides a clear, static

declaration of the relationships among a very limited number of major system

resources that explain most performance variance. This approach is especially

effective with hardware instrumentation that decouples workload from observation,

for otherwise a compact set of observables may be unavailable. The tree supports

simple predictions and promotes more meaningful comparisons of workloads.

Accounting for the sources of performance variation shown in the tree can inspire

new methods of assessment; a "time dilation" technique illustrates this for loosely-

coupled systems with local clocks.

Key words: application; architecture; benchmarks; components; models;

performance.

Measurement and modeling are as intertwined in computer performance

characterization as they are for other experimental fields. Without good measurements,
confidence in a model remains unsubstantiated. And without some model of features,

measurements are disembodied values of uncertain worth. Performance comparisons of

benchmarks on a newer architecture should reveal in simple terms the major reasons for

any differences, but this is not always achieved. Good quality measurements are not

always available, for many systems have very little to aid performance analysis. Other

complications arise from characterization. Intricate performance models evade the issue

of generality amid a screen of detail; they have no economy of description. The
approach that follows emphasizes statistical formulations for quick, useful comparisons
at the application level.

Main emphasis is upon a compact user-level format for expressing variable elements
in a system’s performance. The format, a tree, expresses performance alternatives that

arise from underlying system mechanisms. However, while details such as scheduling,

processor interference and the like are mentioned in the text, these should be seen

primarily as illustrative sources of performance variance and its attendant properties.

The mechanisms as described may lack fidelity to real cases, having been simplified for

discussion.

No recommendation or endorsement, express or otherwise, is given by the National Institute of Standards

and Technology or any sponsor for any illustrative commercial items in the text. Partially sponsored by

the Defense Advanced Research Projects Agency, ARPA Task No. 7066, and the Department of Energy,

DoE Order No. DE-AI05-87ER25046. A mild abridgment of this report has been accepted for the Joint

Conference on Vector and Parallel Processing, CONPAR 90 - VAPP IV, Swiss Federal Institute of

Technology, Zurich, September, 1990.
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Modem computers herald a profusion of new designs, many with parallel processing.

But a broad understanding of system capabilities, vis-a-vis applications, has lagged
behind ad hoc opportunities to build hardware. Consequently, there arise wide
disparities between expected (or promised) performances and those actually realized.

Common benchmark sets show no strong correlation among each other, nor do they

generally represent a specific application of interest [REE89b]. The complexity and
extreme variety of algorithms (and whole benchmark programs) weighs against their use

as atomic units of measure, yet often benchmark program X is run and measurement
numbers are in terms of X as an undifferentiated unit of workload. The relationship of X
to another test program Y is not immediately (if ever) evident. As a measurement
methodology, this coarse level of characterization is unsatisfactory.

P. Denning and G. Adams III have catalogued a number of important open research

issues in performance characterization [DEN88]. Within the spirit of their list, an

examination of stand-alone benchmarks might include simplified but reasonably accurate

methods of: analyzing average execution rates, comparing distinct benchmarks,
predicting gains from system upgrades and identifying likely application-system

compatibiliries. These objectives involve independent variables (algorithmic aspects),

dependent variables (observed events), and systems. The perspective on these aspects

throughout this examination assumes special instrumentation to:

1. Avoid making predictions from algorithmic analyses.

2. Apply an empirical approach in which distinct, constrained effects are measured.

3. Limit the number of effects (observables) to a manageable, easily interpreted set.

Item 1 is important because analyses could become an endless burden. Furthermore,

prediction rules, especially on newer parallel systems, are not always available.

Fortunately, benchmark programs fix their parameter settings at standard reference

values. The importance of predicting from independent variables is thus much
diminished. Item 2 is not quite as simple as it seems. Observables should be separable,

i.e., free of overlap, and should obey some rule(s) of consistency. In this manner,

structure is imposed upon experiments, and checks can be made. The third point

involves discovering which system effects are important, and measuring them.

Static Characterizations

Typical workload on a multiprogrammed computer is a melange that is modeled
stochastically [FLAR83]. The resultant dynamic description can be quite complex. A
static view of workload has attractions because it greatly simplifies, but relying as it does
upon aggregations and averages, it can fail to reflect accurately even one phase from a

heterogeneous workload mix. However, a benchmark program provides possibilities for

simplification. It is for practical purposes, and by definition, free of influences. This is

particularly true on higher performance machines, where benchmarks are simplified

versions of jobs that occupy the whole machine. The benchmark run is also closed end,

that is, it has definite start and termination conditions expressed in its standard

-2-



parameters. Answers, phases of computation, durations—all of these are more
predictable. Benchmark conditions, similar to isolated phases of interactive workloads

(e.g ., [HAR83], p. 148), admit a static description of resource demands.

Attempts to define experiments for specially built instrumentation hardware
(attached to both shared-memory and distributed-memory machines) show that many
benchmark tests return less than satisfactory general knowledge [LY089]. Yet

benchmarks are quite useful, e.g., in system procurement. Their disappointment lies

more in narrow expectations than in any inherent nature. The workload that a

benchmark presents to a system is distinct from observation of the system with this

workload. Sometimes workload and observation become tied together through

measurement limitations. Many systems have only a high-perturbation coarse clock, so

that benchmarks are simply timed, start-to-finish. But since it is likely that performance
is determined by two or more system components, a finer resolution—more observables

with less overhead- -is needed to explain performance variances.

Resolving workload components with benchmarks and elapsed time alone can lead

to small specialized kernels that execute in unrealistic ways [UNI89]. Workload from a

whole application represents a system’s computation task well, but unfortunately a single

observable (elapsed time) resolves system capabilities best with specialized workloads.

The small, homogeneous kernel benchmark is really a secondary instrumentation

technique; unfortunately, it must have narrow workload characteristics to achieve its

purpose of measuring specialized performance capabilities. Adequate instrumentation

can help immensely, separating workload from observation, A low overhead, high

resolution clock on each processor is often sufficient. The challenge is then to discover

what nature all workloads share. Certainly distinct jobs on the same machine exhibit

some common dimensions of hardware and system use [HAR83]. Resource demands can

be compared. The chart below contrasts typical benchmarking practices (first column)
against system instrumentation (second column).

TYPICAL OBSERVABLES IN PRACTICE

WORKLOAD

One, of high overhead

(software benchmarking)

Many, of low overhead

(hardware instrumentation)

typical testfor quantify in detail

Large "code" machine procurement resource demands

at installation ofapplication

assumes workload attempt calibration of

Small "kernel" conditionings have secondary-standard

little influence kernel metric
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The System as Tree-Structured Filter

Abstractly, computing can be viewed as system components responding to demands
of an application, or alternately, as classes of system service partitioning the application

workload. The latter provides a static perspective for performance measurement.
Furthermore, the "partitioning" side of the duality is a good anchoring point; although

hypothetically as varied as applications, only a tiny fraction of all possible systems is

ever manufactured. In contrast, actual applications have a richness that is taken for

granted. Thus, actual systems define a clear starting point for a static modeling
paradigm:

1. Decompose each system into observable, homogeneous service components that

determine general performance. Components are important statistical effects

(observerables) that identify more than just hardware pieces.

2. Build workload signatures from application demands upon dominant service

components.
3. Structure 1 and 2 (above) to reflect performance dependencies in the system.

General aspects of a machine’s capabilities include processor bandwidths, i/o,

memory-to-processor bandwidths, processor-to-processor communication, and memory-
to-memory bandwidth, as well as memory sizes. While ascertaining specific service

components may be a straightforward interpretation of the hardware and architecture,

this is hardly guaranteed. Machines hold surprises in capabilities established not through

obvious architectural features, but through synergistic strengths and weaknesses of

functional groups, including compilers, loaders and schedulers. Features with latencies

(delays) are often important bottlenecks. Heavily used resources are important, but so

are lightly used resources that are slow. Some characteristics will have importance only

in context. Statistical screening methods help select the meaningful from among the

many possibilities [BHH78].

A Paradigm. The modeling paradigm will be a dependency tree that is decorated with

measurement values [LY089b]. For distributed systems with local clocks, the values will

be times or percent of total service times. Shared memory with global time has another

convention that uses service demand and service rate. Since demand divided by rate

gives time (duration), this difference, imposed by clock differences, is not immediately

obvious, although certainly global time can distinguish distributed occurrences that local

time cannot. Discussion begins in terms of service demand (global time), with changes

as noted. An application’s total service demand decomposes linearly throughout the tree.

Demand is 100% (the whole workload) at the root and eventually distributes as smaller

weights on leaves, where interpretations apply. Leaf weights sum to 100%. The tree

reduces a complex performance surface to a two-dimensional display that shows origins

and relationships of performance variations. It does this through paths and fanouts.
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Paths=Dependencies. Processing rates may be conditional, since modem machines

perform operations with operands from various sources: cache, memory, or, with page-

fault, disk. Rates for operations (effects) are thus expressed in the tree as paths. A full

and unique effect name is the path to it from the root. Paths in a tree are unique, which
disambiguates duplicate appearances of labels on the tree.

Fanouts=Competitions. A second source of performance variation concerns identical

results arising in disparate ways. The rate of obtaining a value depends upon which of

competing operations actually does the work. Tree fanouts represent different choices by

programmer, compiler, or scheduler. Competitions provide a large, important source of

performance variance. See Table I [after LY089b], below.

Competitors Architectural

Focus

Performance

Differences

Speedup

Realizations

1 scalar vs. vector peak vector is Monte Carlo trial—none

vector processors 4x to 25xfaster linear algebra—maximum

GATHER- memory unit-stride 3x to 7x estimated,

2 SCATTER vs. system, can be if can avoid GATHER-
unit-stride vector operations 2Jxfaster SCATTER’s sparse vectors

by-row vs. virt. memory page faults by-column 30% fasterfor

3 by-column subsystem, slower by 104 ; linear eq. solver

FORTRAN scalar operations source: row refs. w/FORTRAN

4 serial vs. shared-memory for N processors, gen. unification—none

parallel execution parallel processors at most Nfaster linear algebra—O(N)

S messages vs. distributed- memory refs—50x array processor w/mesh:

memory refs. memory nodes to 10*xfaster generally memory 1Oxfaster

6 NEWS messages distributed

-

NEWS much faster SIMD 3-D mesh sweep:

vs. routed mgs. memory nodes when applicable NEWS 5-9xfaster overall

Table I. Sample Competitions

The finite tree holds decorations from empirical measurements or detailed dynamic
modeling. To fit the tree, a continuous parameter must be separated into discrete

subranges whose number is determined by resolution of the model or measurements.
Suppose there are system resources A and B that at any moment may be concurrently

producing the same thing. The unit interval of their mix ratio, A:B, must be made
discrete. The resultant tree (see Fig. 1) succinctly displays this source of performance
variation.

Shorn of numerical values, the tree somewhat resembles descriptive dependency
graphs (a.k.a., "fishbone" or Ishikawa graphs) employed in statistical design-of-

experiments; in these, minor (independent) factors successively contribute to more
dominant but less differentiated factors. The root is the main, dependent effect. A
decorated performance tree is different— independent variables (the realm of algorithms,

etc.) are ignored. The main effect (again, a dependent variable) decomposes into other
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dependent effects that must reconstitute the original. Whatever is being observed is

conserved at each fanout in the tree.

Conservation of effects allows a tree to support overall quantitative estimates and
predictions from changes to system resource parameters. A tabular format might also

work, but in general it is not flexible enough for deep or imbalanced structures. Nor is a

table easily decorated, since its contiguous structure lacks arcs. The tree, designated UT
for use-tree, displays crucial measurement assumptions in a compact, quickly surveyed
format.

Use-Tree with Global Clock. A UT is a doubly-weighted tree-graph. The unadorned
tree displays a system’s dominant performance effects in a structure that explains

performance variances. Nodes and arcs each have weights of capacity (an admittance)

and use (a frequency). Arc capacity admittances c- describe a system’s component

strengths. Capacities are admittances because these can be obtained from benchmarks
without correcting constantly for code size. Arc frequency weights f- define a relative

amount of demand upon architectural features. The weight is a relative fraction of

overall program demand, and is not any instantaneous overlap or mixing ratio (as per A
and B, Figure 1).

UT arc weights are intrinsic to the stage that an arc represents, whereas node weights

are cumulative from the tree root. Arcs from a node represent alternatives, e.g.,

operations on scalars or vectors, operands via inter- or intra-node communications.
Interpretation assumes that these alternatives never proceed concurrently—the UT must
be built accordingly. Let C and F be capacity and frequency weights of tree node W.

Distinguished root node R is such that C^=l and F^=l: redects 100% workload at

peak performance. Suppose that a directed arc wx from W to X has weights 0<cwx<l

and 0<f <1, subject to £• f .-1. ThenWX 1 W1

CX = CW Cwx

FX = FW fwx

A node with no fanout is a leaf. Each leaf i has a frequency weight F- and a capacity C-.

Leaf weights are used to estimate performance.

Use-Tree with Local Clocks. Without a global sense of time, it is difficult to capture

certain collective rates, e.g., level of parallelism at some instant. Events must be

recorded separately at each node (clock). If an algorithm is sufficiently homogeneous
(across processors), individual node times can be averaged for a compact
characterization. Synchronization and communication latencies that were implicit in

shared-memory admittances become explicit effects, such as receive-message delay.

Interpretation of the tree changes. No longer does it represent a flow of work, but rather,

specific time consumptions. The lack of an absolute sense of time sometimes can be

remedied indirectly, as will be demonstrated later with "time dilation." Furthermore,

while the issue of consistency seems trivial, in this case it can be of great experimental

help. For instance, when a set of variables is constrained to equal elapsed time (or some
other known entity), there is a check on logical completeness of the set and measurement
soundness of its associated observations. This is very important when predictive methods
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(based upon independent variables) are not available.

Workload, Partitions, Weights. Whenever possible, applications (and the independent

variables) are defined logically at a language level, as in FORTRAN, Pascal or Ada®.
While identical textual repetitions of language expressions may incur distinct execution

costs, it is assumed that any machines to be compared run essentially the same logical

programs. A workload of unordered, but not necessarily unqualified, operations is

partitioned into (disjoint) subsets determined by service classes (the UT identifies these).

This is much weaker than stipulating stochastic generations. Since an interpretation is

applied to the (static) subsets, partition consistency and level are of paramount
importance. With global time, executions within a subset proceed in some undefined

manner, serial or parallel, but at one designated rate. Any variation collapsed into the

subset will be lost in the model. The actual description of an application workload
comprises fractions for classes of service, the weights constituting a signature whose
terms sum to unity. Total (elapsed or consumed) time is then the sum of times of all

subsets. Because workload partitionings are usually restricted (e.g ., only vectors worry
about length), a tree paradigm works well.

Higher levels of designated system resource, e.g., subroutines, may through

hierarchical dependencies of implementation and system service multiply the needed
number of observables. A software architecture has not only its own structural sources

of performance variance --it is built upon system pieces that themselves show substantial

variation. The "FORTRAN virtual machine" model in [SSM89] requires 102 parameters.

Characterizations herein stress machine and system resources that limit the number of
parameters, even if this requires special instrumentation hardware. This is also

consonant with real-time monitoring, where instrumentation cost and collection time can
limit observables to perhaps 10, and in any case certainly less than 100. Alternately, an

observable resource can be cast at too low a level, e.g., clock ticks. Since everything

uses ticks, 100% of application performance can be ascribed to this featureless

"resource"— this is, in fact, the common problem of having only elapsed time available.

A benchmark program must reproduce its results adequately from run to run. A
better-designed benchmark will do this, whereas a poorer example will have
considerable variance in its effects. Most examples herein ignore the benchmark as an

additional source of performance variance- -focus is upon the system’s contribution

across benchmarks. Secondly, a benchmark must be stable. Minor perturbations in

parameter settings must not yield completely distinct behavior. Should this not be true,

issues of internal representation, timing uncertainties, rounding and truncation may
achieve disproportionate roles that confound any intended test results. An experimental
communication benchmark set illustrates the probem of stability [LSN89]. Of three

tests—Ring, Mesh, Random-the Random test was refractory. It displayed a very narrow
range of parameters over which it would run. A simple prediction model was difficult to

fit; see below. The primary issue was load imbalance from random assignments of work.
Later versions correct this. While codes like Random do appear in real life, a single-trial

benchmark must behave better.
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Predicting "Random" from Observed Timings
Confidence Level 50% 70%

|
80% 90% 95%

Tolerance ±14% ±21%
|
±25% ±53 ±40%

Skeletons of Real Systems

Figure 2 has five skeletal trees of real computing systems. These trees reflect effects

important to each system’s performance. For the 205 and Cray-1, treating scalar-vector

overlap with only four categories may seem coarse, but in general it is too fine a

distinction ( as the next paragraph shows). While a skeleton is devoid of weights, it does

show if a proposed set of measurements is adequate. For instance, given only peak
vector performance, much of the tree is undecorated for the 205, Cray-1, or AP-120B
(the vector machines in Figure 2). Such sparsity is acceptable only if an application

assigns negligible weights to the unspecified branches. Aside from decoration

completeness, the skeletal shape reveals sources of variation. Virtual memory for the

CDC 205 is readily apparent on its tree’s pure scalar branches. Such details highlight

system dissimilarities that dictate programming, performance and measurement
distinctions.

An Averaged Model for Vector Pipeline Systems. Individual UT skeletons lose details

within a class characterization. Consider a general tree for the architecture class of

vector pipeline systems. The sources for this tree are reports [WAN88] and [BAI88],

whose conclusions reinforce from different perspectives. The first applies statistics to

benchmark results, whereas the second uses typical benchmarking design. Wang, Gary,

and Iyer subject data from the 24 Livermore FORTRAN Kernels (LFK or "loops") to

rigorous statistical analyses. Their first analysis shows that benchmark values from but

one dimension, such as Linpack’s peak vector measurements, cannot alone explain

performance variance. Cluster analysis then separates the "loops" data into groups

distinguished as (i) scalar, (ii) peak vector, or (iii) moderately vectorized. Combining
analyses, the important statistical aspects of the LFK are: (1) scalar rate, (2) peak vector

rate, (3) rate for intermediate-length vectors, and (4) compiler vectorization capability.

These categories cover 98% of variation in LFK (loops) data. A NIST advisory

committee [BAI88] had earlier recommended benchmarks for aspects 1-3. Since point 4,

degree-of-vectorization, is actually determined by program and compiler, the

corresponding UT (Figure 3) subsumes this aspect within its arc weights. Hence, the two
approaches— statistical and architectural—dovetail. Note, however, that smaller details of

individual systems are lost in the aggregate class description.
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Application Examples

Having obtained a UT, it can be put to use. A shared-memory system may have a

tree whose admittances can be varied to estimate results of proposed upgrades. This

explores system sensitivities for a chosen application , the example below being a sort.

Prediction limitations arise through redistribution of workload as admittances change. A
system with fixed scheduling (e.g ., a vector processor) may avoid the immediate
problem, but multiprocessors characteristically balance loads dynamically. The
uncertainty between best and worst schedulings imposes a prediction tolerance. Even
when a multicomputer does not rebalance workload, as with the second example of a

simple hypercube, changing system capacities causes problems. For example, message
latencies, which are like slack variables, expand or contract. As shown below, an

emulation technique called "time dilation" can explore such changes of

compute/communicate balance.

I—Altering Tree Admittances

This example involves a 16-processor shared-memory multiprocessor. A parallel

Quicksort application illustrates some resource demand consequences of its divide-and-

conquer paradigm. Because data, 31,000 values per trial, are in memory, the chosen
model is a primitive thing, a bushy tree with 16 branches from its root. The branches

correspond to 16 levels of parallelism. Quicksort demand coefficients oc are typically

small except for the 16-processor mode, a
16

(column 2, below). They have been

measured via special low-perturbation methods [CAR88, esp. Figure 4].

Active Resource
Processors, Demand,
Mode i Oj

01

20 trial ave.

.026

02 .023

04 .036

08 .057

10 .001

12 .001

14 .002

16 .854

Use Profile—Parallel Quicksort
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Imagine the system modified with some (but not many) processors of an improved
type. Estimates are made for substitution of one, two, and four of the processors with

performances of 3x, 5x or 9x the original. Originally p=16, but with one substitution of

3x, p= 16- 1+3=18. Other substitutions are treated similarly, so 18<p<48. The machine is

modeled such that each unit of processor capacity ip) beyond p=l (monoprocessor)
diminishes overall system effectiveness by 1.233%. With p=48, the net available

capacity is only 27. A ceiling of 30 units from interconnect limitations is never invoked.

This is very simple, but not unrealistic for less expensive parallel systems. The UTs role

is to reveal trends quickly, with coarse distinctions. It is not for final engineering

determinations. Best and worst performance cases (±x in table below) are established

via optimistic and pessimistic schedulings. The tree does not reflect methods of

scheduling, which must be supplementary calculations. However, detailed scheduling

formulations can be tedious, which limits their applicability [LY089c]. The scheduling

here is simple: the best case assumes that the new capacity is always used when it can

benefit, and that load balancing is fine-grained and very good. The worst case simply

assumes no improvement whatsoever.

Once obtained, scheduling tolerances must be assessed relative to other sources of

variation, which are also high. For instance, demand fluctuates from trial to trial. The
greatest change would be whenever workload is exchanged between a

16
and a

1
(max.

and min. processing rates). Since a
1
+a

J6
= 0.88 and rate R

originai
= L the relative

change is (0R/3ot
16
)(a

16
/R) = (8.4)(0.854/l) = 7.2. Consequently, even minor demand

fluctuations among trials pose large performance uncertainties. Actual fluctuations of

a
J6

over 20 trials were +3%, -2% about its mean, or potentially +21.6%, -14.4% if

amplified in a worst case. Looking at another source of variance, compiler upgrades can

cause a 30% change in performance from one release to another. Given these broad

ranges, tolerances in the table are mostly acceptable, if wide. The principal diagonal

illustrates three configurations of equal processing power (p=24) but differing

concentrations of improvement (the latter being 4@3x, 2@5x and l@9x, reading down,
left-to-right). Configuration l@9x improves more, but suffers greater uncertainty.

16 Processors Speed of Faster Processors

# Fast: # Original 3x 5x 9x

4 fast: 12 slow 1.38 ±26% 1.63 ±39% 1.97 ±49%
2 fast: 14 slow 1.27 ±21% 1.44 ±30% 1.70 ± 41%
1 fast: 15 slow 1.19 ± 16% 1.30 ±23% 1.48 ±32%

Predicted Relative Improvement, Sort Workload

II-Answering to the Tree

Distinct applications on the same system are displayed with identical UT skeletons

but differing weights; application versus application comparisons are immediate and
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informative. And, since all algorithmic detail is removed, dissimilar applications can

have similar signatures. These programs should have similar performance (although

independent algorithmic variables will not correspond). If such a pair exhibit

performance differences that interpretation of the tree does not predict, the tree lacks

detail. Sources of performance variation are missing. On the other hand, a UT may
indicate which effects have been collapsed into less revealing performance
measurements. This knowledge may inspire further investigations to resolve the finer

details. A distributed application with local clocks will illustrate this.

Tree 2-(i) depicts an iPSC-1® hypercube system in which clocks are local, even

though our NIST iPSC-1® instrumentation can supply a global time. Local clocks are

more realistic for processors separated widely over some computing network: this

layout, increasingly more prevalent, raises interesting measurement questions. iPSC-1®
computation and communication form a natural dichotomy, since each node has but one

processor to handle both duties. Computation is relatively simple (there are no
accelerators or virtual memory). Communication (send, receive) is asynchronous or

synchronous. The synchronous form has two latency components, logical delay and
physical transport. Program logic delay causes waitings for unsent messages; it indicates

algorithmic bottlenecks. Physical transport is the time a message takes traveling from
sender node to recipient. Together, logical and transport latencies indicate whether a

poorly performing application needs a new algorithm (less logical delay) or faster

interconnection hardware (less transport delay).

Local time. A problem for loosely-coupled systems with local clocks is that

observations cannot directly resolve logical and transport contributions. Yet these are

important sources of performance variation. While modeling and simulation might work,
accuracies are always questionable; such techniques cannot usually account for deep
system details without straining the budget of modest projects. Direct global timings are

similarly expensive. However, indirect instrumentation will work. Local clocks can be

used to modify node behavior; physical transport appears faster through slowed
computation. This emulation technique, time dilation [LYO88 ], provides a range of

relative speeds. All real aspects of the iPSC-1® remain and application programs are

unchanged. The latter point is especially significant for sprawling distributed systems.

Each node changes its computation rate first by timing each calculation segment between
communications; it then introduces an on-the-fly delay that dilates the segment by a

multiplicative constant, D. Physical transport appears D-times faster as a consequence.

A Ring Benchmark. The test algorithm is a synthetic ring benchmark that models
applications with global process dependencies, such as molecular dynamics [LSN89,
LY089a]. It is from the 3-program communications test set mentioned earlier.

Computational workload for these iPSC-1® experiments is first partitioned by
communication interrupt time and user time (the latter comprising application

computation, operating system services, and residual interrupts). Communication
workload is given two components: receive time and send time, each of which can be
synchronous (WRECV, SENDW) or asynchronous (RECV, SEND). The UT for a

homogeneous hypercube program appears in Figure 2-(i). (Homogeneous programs have
all nodes running the same tasks.) Synchronous SENDWs and asynchronous RECVs are

not used. The measured execution times of the components sum to an overall service

consumption. This provides a basis for analysis. Receive time (WRECV) is a
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measurement from initiation of a receive request until completion of that request. Send
time (SEND) covers message dispatch, which may be only the time to get a local buffer.

Since clocks are local, logical and physical delays for the synchronous WRECV are

indistinguishable—they merge into one observation.

A ring with nearest neighbor connections is allocated with each physical processor

node supporting one (logical node) process. Each node (process) will originate a given

number of messages, and additionally, process all other messages passing by. Each
message makes a complete circuit around the ring while being processed by each node.

Once a message returns to its origin, it is removed. A new message is sent unless a node
has exhausted all of its quota. When all nodes have processed all messages, the program
terminates. The ring parameters have a wide range of settings. Parameters include the

number of nodes, message length, number of messages, and computation per datum.
Communication in the ring is semi-synchronous, with messages being acknowledged
within the program on a one-to-one basis. This flow control keeps messages from ex-

hausting buffer space. All communications (i.e., messages) are between neighboring hy-

percube nodes. A normalized time, Tp, is defined as the average node service time, T,

for a component (e.g ., WRECV service time = average WRECV time for n- 16 nodes) di-

vided by dilation factor, D, the latter signifying the emulated speedup for physical tran-

sport. E is overall elapsed time of the dilated program and Eq is a normalized elapsed

time.

and

Normalization corrects "dilated" measurements back to those for the base machine with a

D-faster physical transport. Another useful measure is the speedup of an application for

a given D. This is obtained by dividing E x (the elapsed time of an undilated program) by

Ed •

Speedup = £l
Ed

(where D > 1)

Ring parameter set XA investigates a ring application that is mostly computational.

XB provides another extreme: the application is burdened with frequent communica-
tions. Table II shows application signatures (i.e., percent of time spent in a given mode)
for XA and XB.

APPLICATION condensed SIGNATURE COMPONENTS
User Comm. Intr. Wait-Receive Asvnc. Send

XA: Computation 93.7% 03% 53% 03%
XB: Communication 19.9% 5.1% 73.5% 1.5%

Table II. Ej Signatures of Two Ring Settings, n=16

As expected for XA, neither its signature nor Ed change significantly under dilation.

Transport delay is not a performance bottleneck with XA.

- 12 -
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Communication-Bound Application.

Figure 4 shows that XB’s time for WRECV is significantly reduced as physical tran-

sport accelerates. Improvement directly affects the program. With a transport system
twice as fast, normalized receive time is reduced from 10.0 seconds to 3.85 seconds.

Normalized receive time continues to decrease (down to 0.8 seconds) with a transport

system speedup of four, at which point the computation-communication balance of the

program has shifted towards the computation end. Communication constitutes but 22.1%
(previously 73.5%) of overall service demand. If the modified architecture has a com-
munication system twice as fast originally, XB improves by 1.8. This figure climbs to 3.5

when transport is four times faster. Speedup peaks at 3.7 with a dilation factor of D=6.
No further benefits accrue beyond this. Application XB clearly benefits from enhanced
transport capacity. However, if another communication-bound application, XB2, shows
little speedup with dilation, then logical delays are to blame; XB2 needs another algo-

rithm. Time dilation provides a method of investigating the pivotal transport delay with

neither application recoding nor globally synchronized clocks often called for by other

techniques [REE89a]. Dilation winnows possibilities without expensive architectural or

software improvements.

Summary and Prospects

Discussion has explored a new form of concise, coherent performance summary. A
need does exist for a simple, statistical viewpoint. For example, users certainly benefit

from any characterizations that share common aspects; such characterizations encourage
direct comparisons among applications and promote insights on performance. The prin-

cipal argument in the text has been that stand-alone benchmarks are fixed, specialized

forms of workload, which in conjunction with a system, are amenable to static characteri-

zations as passive filters.

- 13 -



The new structure, the use-tree (UT), provides a clear declaration of relationships

among a very limited number of major system resources. These explain much of the

overall response characteristics of the system to application demands. The set of system
resources induces a partition of workload that is shared by all applications that use the

system. This is a common thread for benchmark comparisons. Observables (effects) re-

lated to the workload partition must, however, be treated in a systematic way. Effects

should be separable, that is, free of inconsistent overlap. Any structure imposed by con-

straining observables provides both a check on experimental soundness and a foundation

for studying system sensitivities. And last, limiting concern to dominant resources of a

system provides an economy of description.

A use-tree captures critical dependencies and substitutabilities that determine gross

performance variations. However, UT effectiveness may hinge upon hardware instru-

mentation that decouples workload from observation. Otherwise, a compact set of ob-

servables may be unavailable. Furthermore, the workload must have stable properties

that are expected for experiments. Given the foregoing, an available UT shapes expecta-

tions. Accounting for sources of performance variation shown in a UT can motivate new
methods of assessment. The "time dilation" technique has illustrated this.

Future Directions. The characterization of distributed, heterogeneous computations is

an open question. A static (absolute) allocation of tasks to nodes may demand UT struc-

tures highly dependent upon the spatial layout of the application. This will naturally im-

pair comparisons with other applications. Fortunately, trends in architecture are away
from primitive machines, which are often difficult to program well.

There are plans to calibrate Eq (normalized elapsed time) against direct measure-

ments of logical and transport delays obtained with a central, shared clock. True meas-
urements will give the indirect dilation method a sharper, quantitative interpretation.

Another project is to take a larger benchmark set and develop signatures of its members
on our shared-memory and loosely-coupled systems.

Acknowledgment. J. Antonishek implemented dilation features on our hypercube, and
D. Dimmick provided values for Quicksort resource demands.
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